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Almost complex structures

M smooth (compact) manifold of dimension 2n.
Almost complex structure: J : TM −→ TM ; J2 = −Id.

Examples: (M, J) complex manifold (i.e. holomorphic atlas).
Generally, we have a section of a bundle:

{linear complex structures on TpM} // J

��
M

WW

Note that the fiber is non-compact: e.g. Jt =

[
0 t

−1/t 0

]
.

For (n = 1), the fiber is R2 − {line}.
In general, the fiber is non-compact space of dimension n(2n) = 2n2.
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Almost complex structures

Theorem (Newlander-Nirenberg): (M, J) is a complex manifold if and only

NJ ≡ 0,

where the Nijenhuis tensor NJ is defined by

NJ(X,Y) := [X,Y] + J[JX,Y] + J[X, JY]− [JX, JY].

In this case, we say J is integrable.
There are many other equivalent ways to formulate integrability.
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Almost complex structures

There are topological obstructions to the existence of an almost complex
structure.
In low dimensions (2n ≤ 10), these can be written in terms of characteristic
classes.
Assuming existence, we can ask for an integrable almost complex structure.
In real dimension 2: every almost complex structure is integrable.
In real dimension 4: there are (further) topological obstructions to the
existence of an integrable structure.

Kodaira’s classification of surfaces.
Buchdahl’s study of the intersection pairing on Ker(∂̄∂).

In real dimension 6: It is unknown whether there are any further
obstructions to the existence of an integrable structure.

There are almost complex 6-manifolds for which there is no known complex
structure (one example below).
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Goal for the talk

We’ll present examples of compact almost complex manifolds with no
complex structure (2n = 4) and a 1-parameter family of almost complex
structures such that NJt → 0 as t → ∞.

Here the convergence is in the C0, i.e. supremum, norm.
We’ll also give a similar example in dimension 6, that is not known to be
complex.
All examples will be nilmanifolds, or solvmanifolds.
Remark on motivation from h-principle:

Can express an integrable structure as solution to “closed differential
relation”.
Via h-principle techniques one can try to deform a “formal” solution to a
“genuine” one.
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Nilmanifold review

We’ll consider G = R4 with nilpotent Lie group structure, and discrete
co-compact subgroup Γ, acting on G on the left.
Associated nilmanifold is the (right) coset space M = Γ\G.
To define an almost complex structure on M, it suffices to give a linear
complex structure on g.
Extend any J on g to be left G-invariant, therefore left Γ-invariant.
In general the topology of M depends on Γ, but...
Theorem (Nomizu): The real cohomology of M can be computed from the
cohomology of the Lie algebra g.

Let’s do an example...
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Filiform manifolds, dimension 4

Let
g = spanR{X1,X2,X3,X4}

and only non-zero brackets determined by

[X1,Xi] = Xi+1 for i = 2, 3.

If {x1, x2, x3, x4} is the dual basis,

dx1 = 0 dx2 = 0 dx3 = −x1 ∧ x2 dx4 = −x1 ∧ x3.

Now use these to compute the real cohomology.
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We have

3 −x1x2x3 −x1x2x4 x1x3x4 x2x3x4

2 −x1x2 −x1x3 x1x4 x2x3 x2x4

iiTTTTTTTTTTTTTTTT
x3x4

iiSSSSSSSSSSSSSSS

1 x1 x2 x3

jjTTTTTTTTTTTTTTTTTT
x4

i iTTTTTTTTTTTTTTTTTT

Therefore, by Poincaré Duality, the Betti numbers of Γ\G are

b1 = b2 = b3 = 2
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Filiform manifolds, dimension 4

Corollary
For any lattice Γ ⊂ G, the compact 4-manifold Γ\G does not admit a complex
structure.

Sketch of Proof:
If Γ\G is complex, since b1 = 2, Γ\G is Kähler.
But a formal nilmanifold is a torus (Hasegawa).
But b2 = 2 ̸= 4, so Γ\G is not a torus.

Note that Γ\G is symplectic: x1x4 + x2x3 is closed and non-degenerate.



Filiform manifolds, dimension 4

Corollary
For any lattice Γ ⊂ G, the compact 4-manifold Γ\G does not admit a complex
structure.

Sketch of Proof:
If Γ\G is complex, since b1 = 2, Γ\G is Kähler.

But a formal nilmanifold is a torus (Hasegawa).
But b2 = 2 ̸= 4, so Γ\G is not a torus.

Note that Γ\G is symplectic: x1x4 + x2x3 is closed and non-degenerate.



Filiform manifolds, dimension 4

Corollary
For any lattice Γ ⊂ G, the compact 4-manifold Γ\G does not admit a complex
structure.

Sketch of Proof:
If Γ\G is complex, since b1 = 2, Γ\G is Kähler.
But a formal nilmanifold is a torus (Hasegawa).

But b2 = 2 ̸= 4, so Γ\G is not a torus.

Note that Γ\G is symplectic: x1x4 + x2x3 is closed and non-degenerate.



Filiform manifolds, dimension 4

Corollary
For any lattice Γ ⊂ G, the compact 4-manifold Γ\G does not admit a complex
structure.

Sketch of Proof:
If Γ\G is complex, since b1 = 2, Γ\G is Kähler.
But a formal nilmanifold is a torus (Hasegawa).
But b2 = 2 ̸= 4, so Γ\G is not a torus.

Note that Γ\G is symplectic: x1x4 + x2x3 is closed and non-degenerate.



Filiform manifolds, dimension 4

Corollary
For any lattice Γ ⊂ G, the compact 4-manifold Γ\G does not admit a complex
structure.

Sketch of Proof:
If Γ\G is complex, since b1 = 2, Γ\G is Kähler.
But a formal nilmanifold is a torus (Hasegawa).
But b2 = 2 ̸= 4, so Γ\G is not a torus.

Note that Γ\G is symplectic: x1x4 + x2x3 is closed and non-degenerate.



Filiform manifolds, dimension 4

Although Γ\G has no complex structure, consider for t > 0:

Jt =


1 −2 csch t 0 0

sinh t −1 0 0
0 0 −1 −

√
2 −2(2 +

√
2) csch t

0 0 sinh t 1 +
√

2

 .

Recall csch t = 1/ sinh t. One can check that J2
t = −Id.

Note that lim
t→∞

Jt does not exist:

lim
t→∞

Jt =


1 0 0 0

+∞ −1 0 0
0 0 −1 −

√
2 0

0 0 +∞ 1 +
√

2
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Filiform manifolds, dimension 4

Since the Nijenhuis-tensor is skew-symmetric, it is completely determined by

Nt(X1,X2) = 0
Nt(X1,X3) = (4 + 4

√
2) csch t X3

Nt(X1,X4) = 2(2 +
√

2) csch t [2(2 +
√

2) csch t X3 −
√

2 X4]

Nt(X2,X3) = 4 csch t [(2 +
√

2) csch t X3 − (1 +
√

2) X4]

Nt(X2,X4) = −4(2 +
√

2) csch2 t X4

Nt(X3,X4) = 0.

So Nt → 0 uniformly on Γ\G as t → ∞.
So, any such filiform manifold Γ\G has no complex structure, but has a
family Jt with arbitrarily small Nuijenhuis tensor.
We have no conceptual explanation for this!
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Fernández and Gray manifold, dimension 4

Let
g = spanR{X1,X2,X3,X4}

and only non-zero brackets determined by

[X1,X3] = −kX1

[X2,X3] = kX2,

for any k ̸= 0. Then
g = g(k) + R[X4]

where g(k) the Lie algebra of the simply connected solvable (non-nilpotent) Lie
group G(k) given by matrices of the form

ekz 0 0 x
0 e−kz 0 y
0 0 1 z
0 0 0 1

 ,

where x, y, z ∈ R and k ̸= 0.
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Fernández and Gray manifold, dimension 4

Solvable Lie groups may not admit a lattice. There is no general criteria.
But G(k) does admit a lattice (many in fact; details omitted).
Let M4(k) = (Γ\G(k))× S1.
The Lie algebra is completely solvable, i.e. the adjoint action adX has real
eigenvalues for all X.

Theorem (Hattori): The real cohomology of any completely solvmanifold can be
computed from the cohomology of the Lie algebra g.

In this case, one can compute the Betti numbers of M4(k) as before:

b1 = b2 = b3 = 2.
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Fernández and Gray manifold, dimension 4

Theorem (Fernández-Gray): A compact 4-dimensional parallelizable manifold
with b1 = 2 has no complex structure.

Fernández and Gray also show that the manifolds M4(k):
are symplectic (and therefore almost Kähler).
satisfy all known cohomological properties of Kähler manifolds.
are formal (in fact the same minimal model as S1 × S1 × S2).
but neverththeless are not Kähler, as they are not even complex.
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Fernández and Gray manifold, dimension 4

For any k ̸= 0, consider the family of linear almost complex structures on g
defined in the ordered basis {X1, . . . ,X4} by:

Jt =



−2
kt2

−1√
3

− 6+
√

3kt2+2k2t4
3k2t3

6−
√

3kt2+2k2t4
3k2t5

−1√
3

0 −1√
3kt

− 2t
3

√
3−2kt2
3kt3

1
t

1
t

1√
3

+ 1
kt2

−1
kt4

−t t −1
k

−1√
3

+ 1
kt2


.

One can show that J2
t = −Id.
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Fernández and Gray manifold, dimension 4

Then the Nijenhuis-tensor is determined by

Nt(X1, X2) =
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3
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Then, for each k ̸= 0, Nt → 0 as t → ∞.
Again, we have no conceptual explanation for this.
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Methodology

Example was found through the following method:
1 Write down generic J on R4 modulo measure zero set.
2 Ansatz: entries of Jt are rational functions in t.
3 Run gradient descent method for

F(J) = ∥NJ∥.

4 This produces a sequence Jn for some small step size.
5 Observe which entries of Jn diverge to 0, or ±∞.
6 Revise Jt with rational entries tk plus lower order terms.
7 Use computer algebra system to solve for unknown coefficients, forcing

Nt = O(1/t).
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Filiform manifolds, dimension 6

What about dimension 6?
Consider the Lie algebra g = spanR{X1, . . . ,X6}, with only non-zero brackets
determined by

[X1,Xi] = Xi+1 for i = 2, 3, 4, 5.

Let M6 = Γ\G where Γ is a discrete subgroup of the simply connected Lie
group G associated to g.

Theorem (Goze-Remm): The Lie algebra g does not admit an integrable linear
complex structure.

So, there is no complex structure on M6 induced as a nilmanifold.
Unknown whether M6 admits a complex structure.
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Filiform manifolds, dimension 6

We give an example of a 1-parameter family Jt, of left-invariant almost-complex
structures on any M6, such that the Nijenhuis-tensor Nt := N(Jt) satisfies
Nt → 0 as t → ∞.
In the ordered basis {X1, . . . ,X6}, define
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Filiform manifolds, dimension 6

Then:
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Nt(Xi, Xj) = 0 if i, j ≥ 3.

Therefore Nt → 0 in the C0-norm on M6 = Γ\G.
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Dimension 6

Some recent related work:
Fei, Phong, Picard, Zhang define “type IIA-flow” for symplectic 6
manifolds.
On nilmanifolds with invariant J, compatible with symplectic form:
if the flow is defined for all time, then Nt → 0 as t → ∞.
Would be interesting to see if the type IIA-flow for this 6 manifold is
defined for all time.
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1 Is there a flow in dimension 2n = 4, or in general, that explains the
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2 Does every compact almost complex manifold admit a family of almost

complex structures with Nt → 0?
3 If yes, why? If not, what are the obstructions?
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Thank you!

L. Fernandez, T. Shin, S. O. Wilson, “Almost complex manifolds with small
Nijenhuis tensor”, arXiv:2103.06090.



Dimension 4

Consider the Lie group R3 ⋊ϕ R, where ϕ : R → Aut(R3), and R and R3 have
the standard additive structures.
To obtain lattice: choose ϕ(1) = A ∈ SL(3,Z), and restrict to the case that A
has three real, positive, distinct eigenvalues.
Example:

A =

0 0 1
1 0 −k
0 1 8


for any integer k with 6 ≤ k ≤ 15.
Extended: ϕ : R → Aut(R3) by defining ϕt = exp(t logA).
Let Γ = Z3 ⋊ϕ Z be lattice in G = R3 ⋊ϕ R.
According to Hasegawa’s classification of compact complex 4-dimensional
solvmanifolds, any such solvmanifold Γ\G does not have a complex structure.
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Dimension 4

Write A = VDV−1, with D diagonal having entries eλ1 , eλ2 , e−(λ1+λ2), and V is
a matrix whose columns are the respective eigenvectors.
Let X1 be the standard basis vector for R, and let {X2,X3,X4} be the columns
of V−1.
In the standard basis {Ei} of R× R3, with E1 = X1, the Lie algebra of G has
non-zero brackets determined by

[E1,Ei] = (logA)Ei,

for i = 2, 3, 4.
Equivalently, the Lie bracket { , } := V−1 ◦ [V(−),V(−)], satisfies

{X1,X2} = λ1X2

{X1,X3} = λ2X3

{X1,X4} = −(λ1 + λ2)X4.

Note that the first Betti number of Γ\G is equal to one unless any of λ1, λ2, or
(λ1 + λ2) are zero.
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Dimension 4

To give a 1-parameter family of almost complex structures Jt on (g, [ , ]) with
NJt → 0, it suffices to give almost complex structures Kt on (g, { , }) in the
basis {X1,X2,X3,X4}, with NKt → 0, for then we may define Jt := V−1KtV.

In the ordered basis {X1, . . . ,X4}, let

Kt =



1 1/t 2(λ1+2λ2)
(λ1−λ2)t 0

− 2(2λ1+λ2)t
λ1−λ2

− 2λ1+λ2
λ1−λ2

− 2(2λ1+λ2)(λ1+2λ2)

(λ1−λ2)2
λ1+2λ2
(λ1−λ2)t

t 1/2 λ1+2λ2
λ1−λ2

−1
2t

0 t 2(2λ1+λ2)t
λ1−λ2

0



One can show that K2
t = −Id.
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Dimension 4

Then the Nijenhuis-tensor of Kt is determined by

Nt(X1, X2) =
λ1 + 2λ2

t
X1

Nt(X1, X3) =
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t
X1

Nt(X1, X4) = −
(

λ1 + 2λ2
t2

)
X1 +

(
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t

)
X2 −

(
λ1 + 2λ2

t

)
X3

Nt(X2, X3) =

(
2
(
λ1 + 2λ2

)
t2

)
X1 −

(
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t

)
X2 +

(
λ1 + 2λ2

t

)
X3

Nt(X2, X4) =

(
(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t2

)
X2 −

(
λ1 + 2λ2

2t2

)
X3

Nt(X3, X4) =

2
(2λ1 + λ2)(λ1 + 2λ2)2

(λ1 − λ2)2t2

X2 −

 (λ1 + 2λ2
)2(

λ1 − λ2
)

t2

X3.

Then, for each non-zero and distinct λ1, λ2, Nt → 0 as t → ∞.
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