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Motivating Problems

Structures of interest:

Hermitian manifold 7→ Complex manifold 7→ Topological Manifold

Questions:
1 What do various types of special Hermitian metrics tell us about the

underlying compatible complex structure?
2 What do various types of complex structures tell us about the

underlying topology?
3 In each case, we may study admissibility, or obstructions.



Motivating Problems

One formulation of the topology problem, in the words of Sullivan:

Prove anything about the topology
of compact complex manifolds in dimensions ≥ 6.

Open-ended, but still challenging. So, why is this compelling?

To quote Thurston:

“The product of mathematics is clarity and understanding. Not the-
orems, by themselves. Their real importance is not in their specific
statements, but their role in challenging our understanding, present-
ing challenges that led to mathematical developments that increased
our understanding.”



Bounty of hope: Kähler geometry

Deligne, Griffiths, Morgan, Sullivan (1975):

∃ Kähler metric

=⇒ C-structure satisfies ddc-condition

=⇒ topology is formal

Among several results to explain today:

Theorem (Stelzig, W.)

∃ Vaisman metric =⇒ C-structure satisfies ddc + 3-condition

∃ Vaisman metric =⇒ topology is almost formal ( ∼= A3-algebra)

ddc + 3 in low degree =⇒ restrictions on homotopy type in all dim’s

To do: ddc + 3-condition, Ex’s, Properties (blowups, deformations, etc.)



Review of ddc-condition

For any complex manifold M , the differential forms A of M feature in the
diagram

(Im dc, d)

(Ker dc, d)

(A, d) (Hdc(A), d = 0)

(Im dc, d)

i

i π

dc

where dc = J−1dJ . Fact: J integrable iff [dc, Jder] = 0− d.

Defn: The ddc-condition holds iff the maps induce iso’s on cohomology.

To see when this occurs, take (co)kernels: ddc-condition holds iff
Hd(Im dc, d) = 0.



Review of ddc-condition

Theorem

[The ddc-condition, DGMS]
For any bounded bicomplex (A, ∂, ∂̄), with d = ∂ + ∂̄ and dc = i(∂ − ∂̄),

the following are equivalent:
1 Hd(Im dc, d) = 0.
2 For all x ∈ A, if dx = 0 and x = dcz, then x = ddcw for some w.
3 E1-degeneration and pure Hodge structure on Hd(A).

4 The bicomplex (A, ∂, ∂̄) is a direct sum of

bicomplexes with only a single component, and ∂ = ∂̄ = 0 (dots)
bicomplexes which are a square of isomorphisms (squares)

dots: 0 squares: C ∂ // C

C

∂̄=0

OO

∂=0 // 0 C ∂ //

∂̄

OO

C

∂̄

OO



Zig-Zag decompositions

What other types of bicomplexes could occur?

Theorem (Stelzig, Khovanov-Qi)

Every (bounded) bicomplex (A, ∂, ∂̄) decomposes as a direct sum of dots,
squares, and zigzags.

In addition to dots and squares we have:



Odd Zig-Zags

Length 3 zig-zags

C

C ∂ //

∂̄

OO

C

C ∂ // C

C

∂̄

OO

and more generally, odd-length zig-zags:

C

C ∂ //

∂̄

OO

C

C ∂ //

. . .

C

C ∂ //

∂̄

OO

C

C ∂ // C

C ∂ //

∂̄

OO

C

C

. . .

∂ // C

C

∂̄

OO



Even Zig-Zags

Length 2 zig-zags

C

C

∂̄

OO

C ∂ // C

And more generally, even-length zig-zags:

C ∂ // C

C

∂̄

OO

C ∂ //

. . .

C

C

∂̄

OO

∂ // C

C

C ∂ //

∂̄

OO

C

C ∂ //

. . .

C

C

∂̄

OO



Dictionary: “decomposition types ↔ algebra”

1 No even zig-zags iff H∂̄
∼= H∂

∼= Hd , i.e. E1-degeneration.
2 No odd zig-zags of length > 1 iff every class in Hd has a unique

representative of a single bi-degree (p, q) , i.e. pure Hodge structure on
Hd.

Example

For M = S1 × S3 with the complex structure of a Hopf manifold, the
Frölicher spectral sequence degenerates, i.e. no even zig-zags, and

A(M) ' ⊕ .

Similarly, for all complex surfaces: there are only dots, squares and length 3
zig-zags.



Calabi-Eckmann

Unlike compact complex surfaces, in dim ≥ 6 there can be even length
zig-zags, and odd zig-zags of length > 3.

Example

For M = S3 × S3 with the Calabi-Eckmann complex structure ,
h0,1

∂̄
(M) 6= 0 but H1

d(M) = 0.
It follows from calculations of Angella and Tomassini that

A(M) ' ⊕ ⊕ .



ddc + 3

Theorem (Stelzig, W., the ddc + 3-condition)

For any bounded bicomplex A, the following are equivalent:
1 The bicomplex (A, ∂, ∂̄) decomposes as a direct sum of dots, squares

and length 3 zigzags.
2 The Frölicher (row- and column-) spectral sequences degenerate at E1,

and the purity defect is equal to 1.

3 The following holds, for all k ≥ 0: For all x ∈ Ak, if x = dy and
x = dcz, then x = dw with w ∈ Ker dc.

4 The following numerical equality holds:∑
k

dimHk(Ker dc) + dimHk(A/Im dc) = 2
∑
k

bk.

Purity defect “pdef” measures (roughly) how many distinct bi-degrees might
be needed to represent a given class in Hd(A).

Easiest definition: pdef = k iff the longest odd length zig-zag has length
2k + 1.



ddc + 3 and S.E.S.

New character in the story: Hd(A/Im dc)

For any complex manifold there is a diagram

(Ker dc, d)

i

xx

π

''
(A, d)

p
&&

(Hdc , d = 0)

jww
(A/Im dc, d)

and a short exact sequence of complexes:

0 // (Ker dc, d)
i+π // (A, d)⊕ (Hdc , 0)

p−j // (A/Im dc, d) // 0,



ddc + 3, L.E.S, and Hopf’s Problem

So, every complex manifold induces a long exact sequence in cohomology:

· · ·
δk−1 // Hk (

Kerdc
) i+π // Hkd ⊕Hkdc

p−j // Hk (
A/Im dc

) δk // Hk+1 (
Kerdc

) // · · ·

Lemma [Stelzig, W.] ddc + 3 ⇐⇒ δ ≡ 0.

Corollary: ∑
k

dimHk(Ker dc) + dimHk(A/Im dc) ≥ 2
∑
k

bk.

with equality iff ddc + 3.

Aside on Hopf’s Problem:

δ is an isomorphism iff the manifold is a homology sphere (rationally).
Only known example of such a complex manifold is S2.
Are there others?
Note: Albanese and Milivojević’s construction yields many potential
examples.



ddc + 3 Properties

In the category of complex manifolds, the ddc + 3-condition satisfies:

1 A blow-up of a manifold M along a smooth center Z ⊆M is ddc + 3 if
and only if both M and Z are ddc + 3.

2 A product is ddc + 3 if and only if one factor is a ddc + 3-manifold and
one is a ddc-manifold.

3 The target of a holomorphic surjection f : M → N with M a
ddc + 3-manifold and dimM = dimN is again a ddc + 3-manifold.

4 Projectivized holomorphic vector bundles are ddc + 3-manifolds if and
only if the base of the bundle is a ddc + 3-manifold.

5 Any sufficiently small deformation of a ddc + 3-manifold is again a
ddc + 3-manifold.



Stability under small deformations

More generally, in words: if there are no even zig zags, the length of the
longest odd zig-zag can only go down in a small deformation of the complex
structure.

Sketch of proof of stability:
ddc + 3 ⇐⇒ dimH∂̄ = dimHd and pdef = 1.

Classical result: dimH∂̄ = dimHd is stable, since dimH∂̄ ≥ dimHd, and
dimH∂̄ is semi-continuous in families.

Suffices to show: dimH∂̄ = dimHd =⇒ pdef ∈ N is semi-continuous ,

Idea: express pdef in terms of a vector-bundle built from intersections of
various filtrations of cohomology. In fact,

pdef =

∣∣∣∣ max
p,q,k≥0

{
p+ q − k

∣∣∣∣F pHk
d (M ;C) ∩ F̄ qHk

d (M ;C) 6= 0

}∣∣∣∣
and {F pHk

d (Mt)} form a complex vector subbundle of the vector bundle
{Hk

d (Mt)} over the base t ∈ ∆ of a family Mt.



Examples of ddc + 3, Vaisman

Examples of ddc + 3 manifolds
all compact complex surfaces

higher Hopf manifolds S1 × S2n−1

certain twistor spaces
simply connected examples (Kasuya, Stelzig)
many nilmanifolds

Theorem (Stelzig, W.)

If a compact complex manifold admits a Vaisman metric then the underlying
complex structure is ddc + 3.

A metric ω is called Vaisman if dω = θ ∧ ω, with θ parallel.

In fact, one can compute which zigzags appear in which positions within the
bicomplex of forms of a Vaisman manifold.



Vaisman decomposition

Consider HB , the subspace of d-harmonic basic forms, which are invariant
under the group action generated by dual holomorphic vector fields Xθ and
XJθ.

Write: θ = θ1,0 + θ0,1.

Theorem (Tsukada 1994, Ishida and Kasuya 2019)

The subspace
HB ⊗ Λ〈θ0,1, θ1,0〉 ⊆ A(V )

is a d-subcomplex and inclusion induces an isomorphism.

Behavior is similar to Kähler manifold, having a Lefschetz decomposition
given by the operator L given by wedging with ω0 = dcθ. One computes the
bicomplex using the primitive decomposition.



Vaisman decomposition

Namely, HB ⊗ Λ〈θ0,1, θ1,0〉 decomposes as a direct sum of tensor products
of primitive forms (dots) with bicomplexes of the form

〈θ0,1〉 ⊕ 〈θ1,0θ0,1〉

C

⊕

⊕ 〈θ1,0〉

⊕

and

〈θ0,1ωn−k0 〉 〈θ0,1θ1,0ωn−k0 〉

〈θ1,0θ0,1ωn−k−1
0 〉

∂ //
∂̄
OO

〈θ1,0ωn−k0 〉

〈θ0,1ωj+1
0 〉

∂ // 〈ωj+2
0 〉

. .
.

〈θ1,0θ0,1ωj0〉
∂

//
∂̄
OO

〈θ1,0ωj+1
0 〉

∂̄
OO

〈θ0,1〉
∂ // 〈ω0〉

. .
.

C 〈θ1,0〉

∂̄
OO



ddc + 3 =⇒ topological restrictions

Finally, I want to indicate how the rational homotopy type restricts the types
of bicomplexes that can occur, for a complex manifold structure with a given
underlying topology.

Example

Consider a filiform nilmanifold M = G/Γ where Γ is a lattice in the simply
connected Lie group G associated with the left-invariant forms

Λ(η1, ..., η6) dη1 = dη2 = 0, dηk = η1ηk−1 for k = 3, ..., 6.

Non-formal nilmanifold with b1 = 2 and trivial ring structure on H1.

1 Admits an almost complex structure (e.g. put Jη2k = η2k−1).
2 Does not admit left-invariant complex structures (Goze-Remm, 2002)
3 Does admit Jt where N(Jt)→ 0 (Fernandez, Shin, W.).
4 It is unknown whether it admits any complex structure.

Which bi-complexes could occur for a hypothetical complex structure on M?



ddc + 3 =⇒ topological restrictions

Question

Is it possible that M admits a complex structure with the following
bicomplex decomposition:

⊕ ⊕ ⊕ ⊕ ⊕

This would yield the correct Betti numbers and satisfy the ddc + 3 condition.

No, in fact...rational homotopy theory shows ddc + 3 must fail:

Theorem (Stelzig, W.)

No compact 6-manifold with the homotopy type of this nilmanifold can
support such a complex structure.



ddc + 3 =⇒ topological restrictions

A sketch of the argument for this claim, which generally gives rational
homotopy obstructions to ddc + 3-complex structures, even in low degree.

The diagram

(Ker dc, d)

i

xx

π

''
(A, d)

p
&&

(Hdc , d = 0)

jww
(A/Im dc, d)

has additional symmetries when A is differential forms on compact
2n-manifold:

1 (left-right symmetry) The left and right side induce maps of same rank
cohomology groups, for all k.

2 (top-bottom duality) Hk(Ker dc) ∼= (H2n−k(A/Imdc))∨, for all k.
In particular, the top maps induce an iso in top degree.



ddc + 3 =⇒ topological restrictions

The filiform nilmanifold is far from being formal: all the topology is
generated from forms of degrees ≤ 1, even the fundamental class.

But, the cohomology ring in degrees ≤ 1 is trivial, so does not create the
fundamental class.

Taking a minimal model M for the algebra Ker dc,

M

��
(Ker dc, d)

i

yy

π

''
(A, d) (Hdc , d = 0)

and using

ddc + 3-condition ⇐⇒ i⊕ π is injective on cohomology,

one can play the two sides of the diagram against each other, and contradict
the left-right symmetry of induced maps in top degree cohomology.



ddc + 3 =⇒ topological restrictions

An example which does have a complex structure:
Let M = G/Γ be a nilmanifold with structure equations

dη3 = η1η2 dη4 = η1η3

dη5 = η2η3 dη6 = η1η4 + η2η5.

Then b1(M) = 2, and η1η2 = dη3, so the product ∪ : H1 ×H1 → H2 is
trivial. There are two left-invariant complex structures, both degenerate at
E2 but not E1, and satisfy purity in degree 1, and pdef ≤ 1. For each

A(M) ' ⊕ ⊕ ⊕

Similar arguments using rational homotopy show this manifold cannot have a
complex structure that is ddc + 3 with pure Hodge in degree 1, left invariant
or not. In particular, the “lines” in the last diagram cannot be dropped.



Thank you!

Reference: “A ddc-type condition beyond the Kähler realm,” Stelzig, Wilson
J. Inst. Math. Jussieu, 2024.



cousins of HA and HBC

Relation with Bott-Chern and Appeli cohomologies:

0

��

0

· · ·Hk
d ⊕Hk

dc
// Hk(A/Im dc)� _

ψ

��

δk // Hk+1(Ker dc)

OO

// Hk+1
d ⊕Hk+1

dc · · ·

Hk
A(A)

d //

����

Hk+1
BC (A)

φ

OOOO

Hk
x (A)

��

d=0 // Hk+1
q (A)
?�

OO

0 0

OO


